unnamed-1.jpg
 
DMGClogo100px.png
 

BACKGROUND

The DMGC initiative establishes a new international infrastructure for diamond research based on important questions about the Earth's deep interior that are uniquely recorded in diamonds. A basic goal is to advance studies of natural diamonds and experiments on diamond-forming fluids/melts for the understanding of carbon mobility in Earth’s interior today and through geologic time. DMGC is organized around the analytical expertise and research interests of members applied to understanding the Earth's deep carbon cycle. Sample availability in diamond research, and a coordinated effort on sample research, is paramount and to this end DMGC also includes registered sample collections and a geochemical database of diamonds and their inclusions.  

Acting officers of the DMGC initiative are D. Graham Pearson (Chair, University of Alberta, Canada), Emilie Thomassot (Co-Chair, CRPG-CNRS, France), Michael Walter (Vice-Chair, University of Bristol, UK), Erik Hauri (Treasurer, Carnegie Institution of Washington, US), Pierre Cartigny (Secretary, Institut de Physique du Globe, France) and Steve Shirey (at large, Carnegie Institution of Washington, US).

The DMGC initiative began in 2011 at the first International Diamond School in Bressanone, Italy and the International Diamond School Program has since become an integral part of DMGC’s activities. The DMGC team currently consists of 28 researchers from 11 countries, experts in a wide variety of aspects of diamond research and includes all major diamond-producing countries and representatives from several diamond industry partners (including Rio Tinto and DeBeers) and professional organizations (including the Gemological Institute of America (GIA) and the Mineralogical Society of America (MSA)). The DMGC Diamond Collection consists of over 400 registered stones from Brazil, North America, Africa and China that are either curated by individual researchers (the virtual collection) or the Carnegie Institution of Washington (the resident collection). The DMGC team currently has over 1400 publications, with nearly 36,000 citations in the scientific literature and a combined H-index of 83 underscoring the wide appeal and high interest level of natural diamond research.

The DMGC group uses non-destructive microbeam methods (Xray diffraction, Raman spectroscopy) to identify the mineral and fluid inclusions trapped in diamonds. After all attempts have been made at non-destructive analysis, selected diamonds are then laser cut and polished to reveal the diamond interior structure (mapped using cathodoluminescence) and to expose inclusions for microbeam analysis (Raman, electron microprobe, SEM, ion microprobe). Sulfide and silicate phases can be subjected to geochronologic age determinations using long-lived isotope dating methods (U-Pb, Re-Os).

Although rare, diamonds outnumber other known mantle carbon phases (e.g. carbides; Hazen et al., 2013a) by many orders of magnitude. Their internal complexity records chemical events that have led to their formation and evolution. In addition, natural diamonds contain inclusions of many types of mantle minerals, whose composition reflects the depth and temperature of their trapping, and whose ages are used to date the host diamond. The pressures of diamond inclusions demonstrate that some diamonds come from as deep as ~800 kilometers; the ages of diamond inclusions range from geologically young (e.g., 100 million years) to ~4 billion years, nearly as old as the oldest rocks on Earth’s surface. 
Despite their scientific importance, the research community has no generally accessible supply of diamonds from mines, due to changes in the economics of diamond mining companies and other factors. Restriction in samples available for research has contributed to a fragmented and uncoordinated community of researchers interested in diamonds for mantle dynamics, a situation that DMGC seeks to remedy through organization and collaboration. Importantly, the work of the DMGC team is the only approach that we have that will address the evolution of the Earth’s deep carbon cycle through deep time.

 
 

Our Team

graham.png

Graham pearson

gdpearson at ualberta.ca

carbon-profile-photo.jpg

emilie Thomassot

emilie at crpg.cnrs-nancy.fr

MICHAEL WALTER

m.j.walter at bristol.ac.uk

Head_shot_Steven_Shirey_v2.jpg

Steven Shirey

sshirey at carnegiescience.edu

 

Erik Hauri

ehauri at ciw.edu

pierre.jpg

Pierre Cartigny

cartigny at ipgp.fr

carbon-profile-photo.jpg

FABRIZO NESTOLA

fabrizo.nestola at unipd.it

Dorrit jacob

dorrit.jacob at mq.edu.au

 
karen-smit

Karen Smit

ksmit at gia.edu

sonja-aulbach

Sonja Aulbach

s.aulbach at em.uni-frankfurt.de

nimis

Paolo Nimis

paolo.nimis@unipd.it

thomas-stachel

Thomas Stachel

tstachel at ualberta.ca

 
frank-brenker

Frank Brenker

f.brenker at em.uni-frankfurt.de

 
light-blue.jpg
 

PUBLICATIONS

 

2017

  • Aulbach S, Heaman LM, Stachel T (in press) The Diamondiferous Mantle Root Beneath the central Slave Craton. Invited contribution to “Geoscience and Exploration of Rio Tinto’s Diamond Deposits“. Editors: Gurney J, Helmstaedt H, Davy A, Smith C. Society of Economic Geologists Special Volume

2016

  • Smith, E. , Shirey, S., Nestola, F., Richardson, S. , Wang, W., Bullock, E, Wang, J., (2016) Origin of big gem diamonds from metallic liquid in deep Earth mantle. Science 354, 1403-1405.
  • Lithos vol 265:  Special Issue on Diamonds Papers (editors: Nestola, Alvero, Pearson & Shirey)
  • F. Nestola, M. Alvaro, D.G. Pearson and S.B. Shirey (2016) “The nature of diamonds and their use in earth's study”, Lithos 265, 1-3
  • H. Bureau, D.J. Frost, N. Bolfan-Casanova, C. Leroy, I. Esteve and P. Cordier (2016) Diamond growth in mantle fluids, Lithos 265, 4-15.
  • K. Hogberg, T. Stachel and R.A. Stern (2016) Carbon and nitrogen isotope systematics in diamond: Different sensitivities to isotopic fractionation or a decoupled origin? Lithos 265, 16-31.
  • M.M. Jean, L.A. Taylor, G.H. Howarth, A.H. Peslier, L. Fedele, R.J. Bodnar, Y. Guan, L.S. Doucet, D.A. Ionov, A.M. Logvinova, A.V. Golovin and N.V. Sobolev (2016) Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace-element contents. Lithos 265, 31-41.
  • C.W. Kosman, M.G. Kopylova, R.A. Stern, J.W. Hagadorn and J.F. Hurlbut (2016) Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds. Lithos 265, 42-56
  • J. Rudloff-Grund, F.E. Brenker, K. Marquardt, D. Howell, A. Schreiber, S.Y. O'Reilly, W.L. Griffin and F.V. Kaminsky (2016) Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos 265, 57-67.
  • K.V. Smit, S.B. Shirey, R.A. Stern, A. Steele and W. Wang (2016) Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds. Lithos 265, 68-81.
  • C.B. Smith, M.J. Walter, G.P. Bulanova, S. Mikhail, A.D. Burnham, L. Gobbo and S.C. Kohn (2016) Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos 265 82-95.
  • S. Skuzovatov, D. Zedgenizov, D. Howell and W.L. Griffin (2016) Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 265, 96-107. 
  • A.R. Thomson, S.C. Kohn, G.P. Bulanova, C.B. Smith, D. Araujo and M.J. Walter (2016) Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos 265, 108-124.
  • D.A. Zedgenizov, V.V. Kalinina, V.N. Reutsky, O.P. Yuryeva and M.I. Rakhmanov (2016) Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos 265, 125-137.
  • C. Anzolini, R.J. Angel, M. Merlini, M. Derzsi, K. Tokár, S. Milani, M.Y. Krebs, F.E. Brenker, F. Nestola and J.W. Harris (2016) Depth of formation of CaSiO3 walstromite included in super-deep diamonds. Lithos 265, 138-147
  • S.C. Kohn, L. Speich, C.B. Smith and G.P. Bulanova (2016) FTIR thermochronometry of natural diamonds: A closer look. Lithos 265, 148-158.
  • N. Kueter, J. Soesilo, Y. Fedortchouk, F. Nestola, L. Belluco, J. Troch, M. Wälle, M. Guillong, A. Von Quadt and T. Driesner (2016) Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies.  Lithos 265, 159-176.
  • D.J. Schulze and L. Nasdala (2016) Unusual paired pattern of radiohaloes on a diamond crystal from Guaniamo (Venezuela). Lithos 265, 177-181.
  • M.P.A.C. Borges, M.A. Moura, S.L.R. Lenharo, C.B. Smith and D.P. Araujo (2016) Mineralogical characterization of diamonds from Roosevelt Indigenous Reserve, Brazil, using non-destructive methods. Lithos 265, 182-198.
  • A.D. Burnham, G.P. Bulanova, C.B. Smith, S.C. Whitehead, S.C. Kohn, L. Gobbo and M.J. Walter (2016) Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos 265, 199-213.
  • A.P. Jones, P.F. McMillan, C.G. Salzmann, M. Alvaro, F. Nestola, M. Prencipe, D. Dobson, R. Hazael and M. Moore (2016) Structural characterization of natural diamond shocked to 60 GPa; implications for Earth and planetary systems. 265, 214-221.
  • F.V. Kaminsky, R. Wirth, L.P. Anikin, L. Morales and A. Schreiber (2016) Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia. Lithos 265, 222-236.
  • M. Palot, S.D. Jacobsen, J.P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J.W. Harris, T. Stachel, C.A. McCammon and D.G. Pearson (2016) Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265, 237-243.
  • S. Piazolo, F.V. Kaminsky, P. Trimby, L. Evans and V. Luzin (2016) Carbonado revisited: Insights from neutron diffraction, high resolution orientation mapping and numerical simulations. Lithos 265, 244-256.
  • N.V. Sobolev, V.S. Shatsky, D.A. Zedgenizov, A.L. Ragozin and V.N. Reutsky (2016) Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: Evidence for mantle metasomatism. Lithos 265, 257-266.
  • N.V. Sobolev, R. Wirth, A.M. Logvinova, A.P. Yelisseyev and D.V. Kuzmin (2016) Retrograde isochemical phase transformations of majoritic garnets included in diamonds: A case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada. Lithos 265, 267-277.
  • A.P. Yelisseyev, V.P. Afanasiev, A.V. Panchenko, S.A. Gromilov, V.V. Kaichev and А.А. Saraev (2016) Yakutites: Are they impact diamonds from the Popigai crater? Lithos 265, 278-291.
  • Y.V. Bataleva, Y.N. Palyanov, Y.M. Borzdov, I.N. Kupriyanov and A.G. Sokol (2016) Synthesis of diamonds with mineral, fluid and melt inclusions. Lithos 265, 292-303.
  • V.G. Malkovets, D.I. Rezvukhin, E.A. Belousova, W.L. Griffin, I.S. Sharygin, I.G. Tretiakova, A.A. Gibsher, S.Y. O'Reilly, D.V. Kuzmin, K.D. Litasov, A.M. Logvinova, N.P. Pokhilenko and N.V. Sobolev (2016) Cr-rich rutile: A powerful tool for diamond exploration. Lithos 265, 292-304.
  • S. Milani, F. Nestola, R.J. Angel, P. Nimis and J.W. Harris (2016) Crystallographic orientations of olivine inclusions in diamonds. Lithos 265, 305-316.
  • L. Nasdala, S. Steger and C. Reissner (2016) Raman study of diamond-based abrasives, and possible artefacts in detecting UHP microdiamond Lithos 265, 317-327.
  • F. Nestola, V. Cerantola, S. Milani, C. Anzolini, C. McCammon, D. Novella, I. Kupenko, A. Chumakov, R. Rüffer and J.W. Harris (2016) Synchrotron Mössbauer Source technique for in situ measurement of iron-bearing inclusions in natural diamonds. Lithos 265, 328-333.
  • F. Nestola, M. Alvaro, M.N. Casati, H. Wilhelm, A.K. Kleppe, A.P. Jephcoat, M.C. Domeneghetti and J.W. Harris (2016) Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction. Lithos 265, 334-338.
  • Y.N. Palyanov, I.N. Kupriyanov, A.G. Sokol, Y.M. Borzdov and A.F. Khokhryakov (2016) Effect of CO2 on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos 265, 339-340.
  • S. Aulbach, J. Mungall & D.G. Pearson (2016). Distribution and processing of highly siderophile elements in cratonic mantle lithosphere.  In: Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry. Eds. J. Harvey & J.M.D. Day,  Reviews in Mineralogy and Geochemistry, Mineralogical Society of America Geochemical Society, vol 81, 239-303.
  • J Harvey, JM Warren, SB Shirey (2016) Mantle sulfides and their role in Re-Os and Pb isotope geochronology. Rev Mineral Geochem 81, 579-649
  • DE Jacob, S Piazolo, A Schreiber, P Trimby (2016) Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle. Nature Communications 7, doi:10.1038/ncomms11891.
  • ES Kiseeva, BJ Wood, S Ghosh, T Stachel (2016) The pyroxenite-diamond connection. Geochem. Persp. Let. (2016) 2, 1-9 | doi: 10.7185/geochemlet.1601.
  • M. Y. Krebs, D. G. Pearson, T. Stachel, R. A. Stern, T. Nowicki & S. Cairns (2016) Using micro-diamonds in kimberlite diamond grade prediction: A case study of the variability in diamond population characteristics across the size range 0.2 - 3.4 mm - from Misery, Ekati Mine, NWT, Canada. Economic Geology, 111, 503-525.
  • M. Palot, , , S.D. Jacobsen, J.P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J.W. Harris, T. Stachel, C.A. McCammon, D.G. Pearson (2016)  Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 30th June doi:10.1016/j.lithos.2016.06.023.
  • A.J.V. Riches, R.B. Ickert, D.G. Pearson, R.A. Stern, S.E. Jackson, A. Ishikawa, B.A. Kjarsgaard, J.J. Gurney (2016) In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton. Geochimica et Cosmochimica Acta. 174, 345-359.
  • J. Rudloff-Grund, F.E. Brenker, K. Marquardt, F.V. Kaminsky, and A. Schreiber (2016) Anal. Chem., 2016,  STEM EDX Nitrogen Mapping of Nanoinclusions in Milky Diamonds from Juina, Brazil, Using a Windowless Silicon Drift Detector System 88 (11), pp 5804–5808
  • A. R. Thomson, M. J. Walter, S.C. Kohn & R. A. Brooker (2016) Slab melting as a barrier to deep carbon subduction. Nature, 529, 76-79.
  • Aulbach S, Stagno V (2016) Evidence for a reducing Archaean ambient mantle and its effects on the carbon cycle. Geology 44: 751-754
  • Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite-eclogite in a subduction mélange. Geochimica Cosmochimica Acta 179: 156-176
  • K.V. Smit, S.B. Shirey and W. Wang. (2016) Type Ib diamond formation and preservation in the West African lithospheric mantle: Re-Os age constraints from sulphide inclusions in Zimmi diamonds. Precambrian Research, 286, 152-166.
  • Jablon, B.M. and Navon, O. (2016) Most diamonds were created equal. Earth and Planetary Science Letters, 443, 41–47.

2015

  • RJ Angel, M Alvaro, F Nestola, ML Mazzucchelli (2015) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems. Russian Geology and Geophysics 56 (1-2), 211-220
  • 42) Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet-clinopyroxene geobarometer for mantle eclogites. Contributions to Mineralogy and Petrology Contributions to Mineralogy and Petrology 169 (2), 1-21
  • 43) M Bruno, M Rubbo, L Pastero, FR Massaro, F Nestola, D Aquilano (2015). Computational Approach to the Study of Epitaxy: Natural Occurrence in Diamond/Forsterite and Aragonite/Zabuyelite. Crystal Growth & Design 15 (6), 2979-2987
  • 44) AD Burnham, AR Thomson, GP Bulanova, SC Kohn, CB Smith, MJ Walter (2015) Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth and Planetary Science Letters 432, 374-380
  • 45) M Bruno, M Rubbo, D Aquilano, FR Massaro, F Nestola (2015) Diamond and its olivine inclusions: A strange relation revealed by ab initio simulations. Earth and Planetary Science Letters 435, 31-35
  • 46) F Nestola, JR Smyth (2015) Diamonds and water in the deep Earth: a new scenario. International Geology Review 58 (3), 263-276
  • 47) S Milani, F Nestola, M Alvaro, D Pasqual, ML Mazzucchelli (2015). Diamond–garnet geobarometry: The role of garnet compressibility and expansivity. Lithos 227, 140-147
  • 48) F Nestola (2015) The crucial role of crystallography in diamond research. Rendiconti Lincei 26 (2), 225-233.
  • 49) D Novella, N Bolfan-Casanova, F Nestola, JW Harris (2015) H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: Implications for the water content of cratonic lithosphere peridotites Lithos 230, 180-183.
  • 50) SB Shirey (2015) Diamond-Premier Mineral for Understanding the Geology of the Deep Earth ELEMENTS 11 (5), 348-348
  • 51) Y.Weiss, J. McNeill, D. G. Pearson, G. M. Nowell & C. J. Ottley (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature, 524, 329-334

2014

  • D.G. Pearson, F.E. Brenker, F. Nestola, J.C.R. McNeill, L. Nasdala, M.T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans and L. Vincze (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221-224.
  • 53) K. Smit, D.G. Pearson, T. Stachel, M. Seller (2014) Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior superterrane. Journal of Petrology, 55, 1829-1863.Abstracts:
  • 54) M. Palot, D.G. Pearson, R.A. Stern, T. Stachel & J.W. Harris (2014)  Isotopic constraints on the nature and circulation of deep mantle C-H-O-N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea).  Geochimica Cosmochimica Acta, 139, 26-46.
  • 55) O. Klein BenDavid, D.G. Pearson, G.M. Nowell, C.J. Ottley and J.C.R. McNeill, A. Logvinova and N. V. Sobolev (2014) The sources and time-integrated evolution of diamond-forming fluids - trace elements and Sr isotopic evidence.  Geochimica Cosmochimica Acta, Geochimica et Cosmochimica Acta, 125, 146-169.
  • 56) G.P. Bulanova, D.F. Wiggers de Vries, D.G. Pearson, A. Beard, S. Mikhail, A.P. Smelov & G.R. Davies (2014) An eclogitic diamond from Mir pipe (Yakutia), recording two growth events from different isotopic sources.  Chemical Geology, 381, 40-54.
  • 57) D.F. Wiggers de Vries, G.P. Bulanova, K. de Corte, D.G. Pearson, J.A. Craven & G.R. Davies (2012) Micron-scale variations in coupled δ13C-N abundance core-rim traverses in octahedral diamonds: insights into the processes and sources of episodic diamond formation beneath the Siberian craton. Geochimica Cosmochimica Acta., 100, 176-199.
  • 58) F. Nestola, P. Nimis, R.J. Angel, S. Milani, M. Bruno, M. Prencipe and J.W. Harris (2014) Olivine with diamond-imposed morphology included in diamonds. Syngenesis or protogenesis? International Geology Review, 56, 1658-1667.
  • 59) P. Cartigny, M. Palot, E. Thomassot, J.W. Harris J.W. (2014) Diamond formation : A stable isotope perspective. Annual Review of the Earth and Planetary Sciences 42, 699-732
  • 60) P. Cartigny P. (2013) Progressin the development of diamond oxygen-isotope geochemistry. 64th Diamond Conference, University of Warwick, P11.
  • 61) P. Cartigny P. (2014) Carbon and oxygen isotopes in diamonds. DMGC Workshop, Bristol 2014.
  • 62) Silversmit, G., Vekemans, B., Appel, K., Schmitz, S., Schoonjans, T., Brenker, F.E., Kaminsky, F. and Vincze, L. (2011) Three-dimensional Fe speciation of an inclusion cloud within an ultra-deep diamond by confocal -XANES: evidence for late stage overprint. - Analytical Chemistry 83, 6294-6299.
  • 63) Laforce, B., Schmitz, S., Vekemans, B., Rudloff, J., Garrevoet, J., Tucoulou, R., Brenker, F.E. Martínez-Criado, G. and Vincze, L. (2014) Nanoscopic X-ray Fluorescence Imaging of Meteoritic Particles and Diamond Inclusions" Analytical Chemistry, accepted, Manuscript ID: ac-2014-03764h.
  • 64) Garrevoet, J., Vekemans, B., Tack, P., Schmitz, S., Brenker, F.E., Falkenberg, G. and Vincze, L. (2014) A new methodology towards 3D micro-XRF imaging using an energy dispersive CCD detector" Analytical Chemisty, accepted, Manuscript ID: ac-2014-03410s.
  • 65) Stagno V, Frost DJ, McCammon CA, Fei Y The oxygen fugacity of graphite and diamond bearing eclogites in equilibrium with carbonate-rich melts. Implications for oxy-thermobarometry of eclogite rocks. Contributions to Mineralogy and Petrology (In Press)
  • K.V. Smit, T. Stachel and R.A. Stern, 2014. Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1 Ga. Contributions to Mineralogy and Petrology, 167, 962

  • K.V. Smit, T. Stachel, R.A. Creaser, R.B. Ickert, S.A. Dufrane, R.A. Stern and M. Seller, 2014. Origin of eclogite and pyroxenite xenoliths 

  • Weiss, Y., Kiflawi I., Davies N. and Navon O. (2014) High-density fluids and the growth of monocrystalline diamonds. Geochimica et Cosmochimica Acta 141:145–159. 

2013

  • Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84 – 88
  • 67) Shirey SB, Cartigny P, Frost DJ, Nestola F, Nimis P, Pearson DG, Sobolev NV, Walter MJ (2013) Diamonds and the Geology of Mantle Carbon. In:  Reviews in Mineralogy & Geochemistry, Mineralogical Society of America. Vol 75, Carbon in Earth – Editors Robert M. Hazen, Adrian P. Jones, and John A. Baross, pp 355-421. 
  • 68) D.F. Wiggers de Vries, D.G. Pearson G.P. Bulanova, A.P. Smelov, A.D. Pavlushin & G.R. Davies (2013) Re-Os dating of sulphide inclusions zonally distributed in single Yakutian diamonds: Evidence for multiple episodes of Proterozoic formation and protracted timescales of diamond growth.  Geochimica Cosmochimica Acta. 120,  363–394.
  • 69) M. Palot, D.G. Pearson, T. Stachel, J.W. Harris, G.P. Bulanova & I. Chinn (2013) Multiple growth episodes or prolonged formation of diamonds: inferences from infrared absorption data. In: D. G. Pearson et al. (eds.), Proceedings of 10th International Kimberlite Conference, Volume 1, Special Issue of the Journal of the Geological Society of India, DOI: 10.1007/978-81-322-1170-9_18, Geological Society of India 2013
  • 70) M. Palot, D.G. Pearson, R. Stern, T. Stachel & J.W. Harris (2013). Multiple growth events, processes and fluid sources involved in the growth of diamonds from Finsch mine, RSA: a micro-analytical study.  Geochimica Cosmochimica Acta. 106, 51-70.
  • 71) S.B. Shirey, P. Cartigny, D.J. Frost, F. Nestola, P. Nimis, D.G. Pearson, N.V. Sobolev & M.J. Walter (2013) Diamonds and the Geology of Mantle Carbon. In:  Reviews in Mineralogy & Geochemistry, Mineralogical Society of America. Vol 75, Carbon in Earth – Editors Robert M. Hazen, Adrian P. Jones, and John A. Baross, pp 355-421.  
  • 72) S. B. Shirey & J. E. Shigley (2013) Recent advances in understanding the geology of diamonds. Gems and Gemology 49 188-222.
  • Weiss, Y., Griffin, W.L. and Navon, O. (2013) Diamond-forming fluids in fibrous diamonds: the trace-element perspective. Earth and Planetary Science Letters, 376, 110-125.

  • Weiss, Y., Kiflawi I. and Navon O. (2013) The IR absorption spectrum of water in microinclusion-bearing diamonds. Pearson DG et al. (eds) Proceedings of 10th International Kimberlite Conference, V.1. pp. 271-280.  Journal of the Geological Society of India.

2010

  • K.V. Smit, S.B. Shirey, S.H. Richardson, A.P. le Roex and J.J. Gurney, 2010. Re–Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: Age constraints on Kimberley cratonic lithosphere. Geochimica et Cosmochimica Acta, 74, 3292 – 3306.